Comparative Study of Decision Trees and Rough Sets for the Prediction of Learning Disabilities in School-Age Children
نویسندگان
چکیده
This paper highlights the study of two classification methods, Rough Sets Theory (RST) and Decision Trees (DT), for the prediction of Learning Disabilities (LD) in school-age children, with an emphasis on applications of data mining. Learning disability prediction is a very complicated task. By using these two classification methods we can easily and accurately predict LD in any child. Also, we can determine the best classification method. In this study, rule mining is performed using the algorithms LEM1 in rough sets and J48 in construction of decision trees. From this study, it is concluded that, the performance of decision trees may be considerably poorer in several important aspects compared to that of rough sets theory. It is found that, for selection of attributes, RST is very useful especially in the case of inconsistent data.
منابع مشابه
Machine Learning Approach for Prediction of Learning Disabilities in School-Age Children
This paper highlights the two machine learning approaches, viz. Rough Sets and Decision Trees (DT), for the prediction of Learning Disabilities (LD) in school-age children, with an emphasis on applications of data mining. Learning disability prediction is a very complicated task. By using these two approaches, we can easily and accurately predict LD in any child and also we can determine the be...
متن کاملPrediction of Key Symptoms of Learning Disabilities in School-Age Children Using Rough Sets
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabil...
متن کاملPrediction of Learning Disabilities in School Age Children using SVM and Decision Tree
This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to b...
متن کاملRough sets theory in site selection decision making for water reservoirs
Rough Sets theory is a mathematical approach for analysis of a vague description of objects presented by a well-known mathematician, Pawlak (1982, 1991). This paper explores the use of Rough Sets theory in site location investigation of buried concrete water reservoirs. Making an appropriate decision in site location can always avoid unnecessary expensive costs which is very important in constr...
متن کاملSignificance of Classification Techniques in Prediction of Learning Disabilities
The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and...
متن کامل